• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Westminster Speed

Westminster Speed & Sound

(410) 857-5300 | CONTACT US | FINANCING AVAILABLE
  • Audio
    • BMW Upgrades
    • Ford Bronco Upgrades
    • Jeep Wrangler Upgrades
      • Jeep Wrangler Overview
      • Upgrades For Your Jeep Wrangler JL
      • Upgrades For Your Jeep Wrangler JK
    • Porsche Upgrades
    • Car Audio
    • Digital Signal Processing
    • Marine Audio
    • Motorcycle Audio
    • Stinger Heigh10 Multimedia Receiver
    • Powersports Audio and Accessories
    • Satellite Radio
    • Car Audio Repair
  • Convenience
    • Radar Detectors
    • Rear Seat Video
    • Heated Seats
    • Remote Car Starters
      • Remote Car Starters Overview
      • Remote Car Starter Models
      • Remote Starter Estimate Request
    • Security Systems
  • Accessories
    • Ceramic Paint Coating
    • Paint Protection Film
    • Lighting
    • Trailer Hitches
    • Truck Accessories
    • Truck Bed Covers
    • Truck Steps
  • Driver Safety
    • Backup Sensors
    • Backup Cameras
    • Dash Cameras
  • Window Tint
    • Window Tint at WSS
    • Window Tint Estimate Request form
  • About
    • Our Work
      • Client Vehicles
      • Videos
    • About WSS
    • Why Choose WSS?
    • Customer Reviews
    • Directions
    • Install Bay
    • Showroom
    • Demo Sound Room
    • Contact Us
  • Artistry
  • Facebook

Why Do All Car Audio Speakers Need To Be Auditioned Before Buying?

May 28, 2023 By BestCarAudio.com Leave a Comment

Audition Speakers

Picking new speakers for your home, a new set of headphones or upgrades for your car audio system should all involve the same auditioning process. Take two or three of your favorite songs on a memory stick to a local mobile enhancement retailer and audition the speakers under controlled conditions. We can’t count the number of times people have purchased speakers based on a brand’s perception of quality only to hear others that sound significantly better for equal or sometimes dramatically less money.

We’ve covered the process of auditioning speakers in the past. In this article, we’ll look at what makes speakers that look somewhat similar sound so different.

For this discussion, let’s look at the differences between 6.5-inch woofers that you’d find in a component set. The same design differences apply to many coaxial speakers and even to subwoofers.

Speaker Sizes

You’d think that within a specific speaker size class, the effective cone area of a driver would be pretty consistent. The specification that describes the effective cone area is called Sd and is typically specified in square centimeters, though the official standard is square meters. Many entry-level or high-excursion 6.5-inch drivers have an effective area specification of around 120 square centimeters. Those designs that have been optimized to maximize surface area might be above 140 square centimeters. That’s 17% more cone area that fits in the same application.

In terms of efficiency and low-frequency output, more area is better. The drawback of a larger cone is that it becomes directional at a lower frequency and necessitates a tweeter that can play loudly at frequencies below 2 kilohertz without producing a lot of distortion. Purely from an effective cone area standpoint, you can imagine that different driver designs sound unique, and more so when listened to off-axis.

Audition Speakers
Rockford Fosgate’s Vertical Attach Surround Technology (VAST), as used on the T3652-S set, increases effective cone area for more efficiency and output.

Cone Excursion Capability and Power Handling

If you want to listen to your music at high volume levels, you need a driver that’s designed to be reliable and can move a lot of air. Without getting overly complicated, the length of the voice coil in relation to the height of the motor structure’s top plate determines how far the cone can move forward or rearward linearly. This specification is known as Xmax. It’s calculated by subtracting the top plate’s height from the voice coil’s height, then dividing by two. The suspension design also plays into how linearly the driver operates, but we’ll skip that for the moment. A basic OE replacement speaker might move forward and rearward 2 or 3 millimeters in each direction. A mid-level driver that can play much louder might reach up to 5 millimeters in each direction. The most premium designs offer more than 8 millimeters of excursion (in each direction) and often outperform larger drivers with lesser designs.

Of course, to make a speaker cone move greater distances, an amplifier needs to feed it significant amounts of power. As speakers are notoriously inefficient, much of the energy they receive is converted to heat in the voice coil winding. To increase power handling, larger voice coil formers are necessary. A typical replacement or basic upgrade speaker might have a voice coil with a diameter of 25 centimeters or about an inch. These drivers can often handle up to 75 or 80 watts of power if the winding is relatively long. If it’s short, power handling is usually down around 50 watts.

Better drivers will use larger voice coils in the 38-mm or 1.4-inch range. Power handling on these drivers jumps to around 100 to 125 watts, depending on the rating and testing method. Finally, the most custom designs might use a 51-millimeter former for the most durability at extreme operating levels. Oddly, the companies using these designs seem conservative, with their power ratings at about 100 to 150 watts continuous.

Audition Speakers
The Audison Thesis TH 6.5 II Sax woofer features a 50-mm voice coil to provide a 150-watt continuous power handling rating.

Cone Materials

If ever there was a topic that confused consumers, it would be the benefits and drawbacks of different woofer cone materials. Paper, plastic, carbon fiber, aluminum, layered composites, woven composites and all manner of in-between designs are prevalent in the top brands. Is one better than another? Some might excel in some frequency ranges while performing poorly in others.

The goal of the woofer cone is to move forward and rearward linearly without resonating. Rigid cones that aren’t well-damped tend to get very excited at higher frequencies and can cause harshness in the upper midrange. They are all reasonably similar at lower frequencies, except for how their mass works with the suspension and motor design to affect bass reproduction. If you see or hear claims of “tighter bass” based on a suggestion of improved cone material, someone doesn’t understand speaker design.

We should talk about dust caps and surrounds as an extension of cone materials. These components exhibit the same distortion-causing resonance issues as a poorly designed cone. These parts aren’t afterthoughts, and their design and selection are paramount to the proper operation of a speaker.

Audition Speakers
Sony’s Mobile ES Lightweight Rigid Cellular Diaphragm woofer cones control high-frequency resonances to deliver precise audio reproduction.

Motor and Suspension Design

Perhaps the most significant factor of loudspeaker sound quality is the motor’s design and the selection of suspension components. As an extension of our discussion of voice coil geometry and excursion limits, how the suspension behaves at extreme drive levels can effectively determine the sound quality of a speaker. Cupped spiders or those with linear compliance curves can result in significant distortion at lower frequencies and high excursion levels. Distortion will occur if more electrical input doesn’t equate to perfectly symmetrical or a proportional increase in cone travel. I’ve measured high-efficiency drivers that produced more output at 160 Hz than 80 Hz when driven with an 80-hertz sine wave. That’s right; the source information didn’t contain any audio at 160 hertz.

Consistent voice coil inductance based on cone position is also an important issue. When the voice coil moves forward, the T-yoke occupies less of it. When it moves rearward, more of the coil surrounds the T-yoke. This not only changes the inductance of the driver but its perceived frequency response.

The result, in extreme cases, is akin to listening to your voice when speaking through the blades of a moving fan. More high-frequency information is produced when bass information moves the cone outward and less when the cone moves inward. Features like aluminum and copper shorting rings in the motor and copper caps or shields on the T-yoke can help reduce this phenomenon.

Audition Speakers
The Hertz ML 1650.3 Legend includes an aluminum-covered pole and a shorting ring to reduce variance in inductance to yield better sound quality.

Another factor that plays a huge role in the understanding of speaker quality is the stiffness of the suspension. A “tight” or inflexible driver typically has a higher Qms (mechanical Q) compared to a very soft one. This results in the driver being overdamped, which causes it to ring and resonate after the signal has stopped. It’s like flicking one of those spring door stops you’d find on the baseboard at home. Mathematically, perfect damping occurs when a driver in its enclosure has a Qtc (total system Q) of 0.5. At this value, the transient response is considered perfect. This comes at the expense of some output in the midbass region. A total system Q of 0.707 is called a Butterworth response, and it exhibits flat frequency response above the resonant frequency with acceptable time-based performance.

Systems with Qtc values around 1.0 are often described as warm as more upper bass information is produced. However, this comes with a significant increase in system distortion and a lack of what is described as “cone control.” It might be fun, but it’s not technically accurate.

Audition Speakers
The ARC Audio RS 6.0 is a low-Q driver that combines premium cone and dust cap design with an impressively linear motor assembly to deliver clean performance.

Why You Need to Audition Car Audio Speakers

No two speaker designs are going to sound the same. Some drivers are optimized for efficiency to serve as original-equipment replacement speakers that will work well with a factory-installed or low-power radio. Other drivers are designed to handle significant amounts of power and produce a generous helping of bass at the expense of upper-frequency output.

Efficiency, frequency response, distortion characteristics, directivity, Q-factor and much more change how a speaker sounds. To choose an upgrade that will work well in your audio system, audition the drivers you have in mind under conditions that are as controlled as possible. Looking at graphs and specifications can, if you have years of experience understanding how the information affects performance, tell you something about the driver.

Still, none of that characterizes non-linearities that cause distortion. No car audio companies share that information publicly. As such, you must train your ears to pick up issues affecting performance. Take your favorite music to a local specialty mobile enhancement retailer and start listening. Give the volume on the source unit a good crank and get the speakers working so you’ll know what to expect.

Once you’ve established a baseline for quality, listen to even more speakers. When you can pick out the differences, choose the driver that’s the most accurate in all regards for your vehicle – you’ll be happy you did.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Share this:

  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on X (Opens in new window) X
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Pinterest (Opens in new window) Pinterest

Related

Filed Under: Car Audio, ARTICLES, RESOURCE LIBRARY

About BestCarAudio.com

BestCarAudio.com is a showcase for the very best mobile electronics retailers in the world and a place to educate and inform interested consumers about existing and emerging technologies.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

OTHER RECENT POSTS

3M Color Stable IR Window Tint

Product Spotlight: 3M Color Stable IR Automotive Window Tint

3M is well-known for its premium-quality automotive window tint films. Our “step-up” film is the new … [Read More...]

GMC Sierra Stereo System

Extraordinary GMC Sierra Stereo Upgrade for Finksburg Enthusiast

A client from Finksburg recently contacted the Westminster Speed and Sound team to inquire about an … [Read More...]

Geoshield Apex

Product Spotlight: Geoshield APEX Window Tint

When it comes to automotive window tint, Geoshield has been hard at work developing a new benchmark … [Read More...]

Mercedes-Benz Sprinter Van

Luxury Stereo Upgrade for 2022 Mercedes-Benz Sprinter Van from Hanover

A client from Hanover contacted Westminster Speed and Sound to inquire about upgrading the stereo … [Read More...]

2022 BMW X5

Sound System Upgrade for 2022 BMW X5 From Hanover

A client from Hanover contacted the Westminster Speed and Sound team to inquire about upgrading the … [Read More...]

BMW Stereo Upgrade

Premium Stereo System upgrade for 2022 BMW X3 from Owings Mills

A client from Owings Mills recently contacted the Westminster Speed and Sound team to ask about a … [Read More...]

Subscribe to Our Website via Email

Enter your email address and receive notifications of new posts by email.

Search our site with any combination of CATEGORIES, TAGS, or KEYWORDS

  • Category

  • Tags

  • Sort Order

  • Keyword

  • » Reset

Contact Us

  • This field is hidden when viewing the form

Address and Hours

202 Pennsylvania Ave Westminster, MD 21157
(410) 857-5300
Monday, Wednesday, Friday9:00 am – 5:00 pm
Tuesday, Thursday9:00 am – 7:00 pm

Directions


Get Directions to Westminster Speed and Sound

Subscribe to Our Website via Email

Enter your email address and receive notifications of new posts by email.

Copyright © 2025 Westminster Speed and Sound · Privacy Policy · Website by 1sixty8 Media, inc. · Log in · !

 

Loading Comments...